
Certification

Jan 30th, 2024 / v.0.2
Audited source code version:

ef8ad84cf1fa76ae1f94c39d723920333d548da1

SMART CONTRACT AUDIT

SMART CONTRACT AUDITS

SFT BOOST STAKING CONTRACT

OneDEX Contract Audit

Some sections are more important than others. The most critical areas are at the top, and the less
critical sections are at the bottom. The issues in these sections have been fixed or addressed and
will show by the "Resolved" or "Unresolved" tags. Each case is written so you can understand how
serious it is, with an explanation of whether it is a risk of exploitation or unexpected behavior.

These issues can have a dangerous effect on the ability of the contract to work correctly.

These issues significantly affect the ability of the contract to work correctly.

These issues affect the ability of the contract to operate correctly but do not hinder its behavior.

These issues have a minimal impact on the contract's ability to operate.

These issues do not impact the contract's ability to operate.

CRITICAL

HIGH

MEDIUM

LOW

INFORMATIONAL

1

Structure and Organization of the Document

OneDEX Contract Audit

Possible fix to research!

Add ‘#[only_owner]’ on top of the ‘setConfig’ endpoint or do the configuration in
the ‘init’ method and remove the ‘setConfig’.

Possible fix to research!

In order to protect the user, make sure that the payment vector length is 1 for
the case where it’s not the first ‘stake’ the user makes.

Description: The endpoint made for configuring the contract parameters is public and callable by
anyone.

Description: The 'stake' endpoint accepts multiple payments but does not check for the length of
the payments vector, except when staking for the first time, when it does check. It just takes into
account the first payment and 'eats' all the following ones.

2

Issues

Fixed / CRITICAL1. Loss of funds

Fixed / CRITICAL2. Loss of funds

Response!

Fixed.

Response!

Fixed.

Status!

Accepted & Closed

Status!

Accepted & Closed

OneDEX Contract Audit

Possible fix to research!

Write tests in order to test the functionality of the contract.

Description: There are no tests for this contract.

Not applicable / HIGH4. Lack of tests

3

Possible fix to research!

Check ‘reward_deposit_amount’ against the reward amount in order to make sure
the action can be completed and update it accordingly (decrease it) when doing
a full unstake because the reward is sent too.

Description: When someone unstakes, the 'reward_deposit_amount' is left unchanged. In case
it is zero, a user that unstakes will receive rewards not from the 'reward_deposit', but from the
contract balance aka other user's funds.

Fixed / CRITICAL3. Loss of funds

Response!

Fixed.

Response!

Not applicable. Tests were done manually.

Status!

Accepted & Closed

Status!

Accepted & Closed

OneDEX Contract Audit

Possible fix to research!

When receiving ‘Some(a)’ as a parameter of ‘unstake’, make sure the value of ‘a’
is greater than zero.

Possible fix to research!

There’s no fix because it’s not necessarily an issue but it might be a good idea
to make it ‘only_owner’ or at least to add a check against a whitelisted set of
addresses that are allowed to deposit.

Description: When someone is trying to unstake 'Some(0)', the contract will try to send '0' tokens
to the caller. The call will fail but it might be harder to understand why, because the 'send' function
will fail.

Description: The 'deposit' endpoint is callable by anyone.

Fixed / LOW5. Unstake zero amount

Fixed / LOW6. Anyone can deposit

Response!

Fixed.

Response!

Fixed.

Status!

Accepted & Closed

Status!

Accepted & Closed

4

OneDEX Contract Audit 5

Verification Conditions

Integrity of User's Payment on Stake1

 let caller = self.blockchain().get_caller();
 let payments = self.call_value().all_esdt_transfers();
 let one_payment = payments.get(0);
 require!(
 one_payment.token_identifier == self.one_token_id().get(),
 “Invalid stake token id”
);

When fully unstaking, the user also gets the rewards2

 self.user_reward_amount(&caller).set(BigUint::zero());
 self.send().direct_esdt(
 &caller,
 &self.one_token_id().get(),
 0,
 &(unstake_amount + &reward_amount),
);

Claiming the rewards is possible only if there's enough tokens in the reward deposit3

 require!(
 self.reward_deposit_amount().get() >= reward_amount,
 “No enough deposit for reward”
);

OneDEX Contract Audit 6

Suggestions (Optional)
1. Recommendation is to write them in Rust Framework instead of Mandos.

Test results

Initially audited source code version: c839067a0ffefa1f010b0a87631f6c4837a75e91

Second review source code version: ef8ad84cf1fa76ae1f94c39d723920333d548da1

